

27 March 2023

This audit report was prepared by DefiMoon for Safe-Yields protocol.

Audit information

Description DeFi protocol on Arbitrum blockchain implementing a deflationary token
mathematically designed to sustain positive price action.

Website https://www.safeyields.io/

Audited files interfaces: ISafeToken.sol, ISafeVault.sol 
SafeToken.sol, SafeVault.sol, Wallets.sol

Timeline 15 March 2023 - 27 March 2023

Audited by Ilya Vaganov

Approved by Artur Makhnach, Kirill Minyaev

Languages Solidity

Methods Architecture Review, Unit Testing, Functional Testing, Manual Review

Source code https://github.com/SafeYields/safe-yields-contracts/tree/
01b281ac9ed027fba929211eb9e5dbdbb06fedb8/contracts

https://github.com/SafeYields/safe-yields-plus-contracts/tree/
30bc65672a92c981c83f820bd4cf0ee8388fffef/contracts

Chain Arbitrum

Status Passed

All issues have
been resolved

0

High Risk A fatal vulnerability that can cause the loss of all Tokens / Funds.

Medium Risk A vulnerability that can cause the loss of some Tokens / Funds.

Low Risk A vulnerability which can cause the loss of protocol functionality.

Informational Non-security issues such as functionality, style, and convention.

https://www.safeyields.io/
https://github.com/SafeYields/safe-yields-contracts/tree/01b281ac9ed027fba929211eb9e5dbdbb06fedb8/contracts
https://github.com/SafeYields/safe-yields-plus-contracts/tree/30bc65672a92c981c83f820bd4cf0ee8388fffef/contracts

Disclaimer

This audit is not financial, investment, or any other kind of advice and could be used for
informational purposes only. This report is not a substitute for doing your own research and due
diligence should always be paid in full to any project. Defimoon is not responsible or liable for any
loss, damage, or otherwise caused by reliance on this report for any purpose. Defimoon has based
this audit report solely on the information provided by the audited party and on facts that existed
before or during the audit being conducted. Defimoon is not responsible for any outcome,
including changes done to the contract/contracts after the audit was published. This audit is fully
objective and only discerns what the contract is saying without adding any opinion to it. Defimoon
has no connection to the project other than the conduction of this audit and has no obligations
other than to publish an objective report. Defimoon will always publish its findings regardless of
the outcome of the findings. The audit only covers the subject areas detailed in this report and
unless specifically stated, nothing else has been audited. Defimoon assumes that the provided
information and materials were not altered, suppressed, or misleading. This report is published by
Defimoon, and Defimoon has sole ownership of this report. Use of this report for any reason other
than for informational purposes on the subjects reviewed in this report including the use of any
part of this report is prohibited without the express written consent of Defimoon. In instances
where an auditor or team member has a personal connection with the audited project, that auditor
or team member will be excluded from viewing or impacting any internal communication regarding
the specific audit.

Audit Information

Defimoon utilizes both manual and automated auditing approach to cover the most ground
possible. We begin with generic static analysis automated tools to quickly assess the overall state
of the contract. We then move to a comprehensive manual code analysis, which enables us to find
security flaws that automated tools would miss. Finally, we conduct an extensive unit testing to
make sure contract behaves as expected under stress conditions.

In our decision making process we rely on finding located via the manual code inspection and
testing. If an automated tool raises a possible vulnerability, we always investigate it further
manually to make a final verdict. All our tests are run in a special test environment which matches
the "real world" situations and we utilize exact copies of the published or provided contracts.

While conducting the audit, the Defimoon security team uses best practices to ensure that the
reviewed contracts are thoroughly examined against all angles of attack. This is done by evaluating
the codebase and whether it gives rise to significant risks. During the audit, Defimoon assesses
the risks and assigns a risk level to each section together with an explanatory comment.

Audit overview

Major issues have been found.

Smart contracts contain both small inaccuracies and errors in calculations, and serious
vulnerabilities in the logic of the protocol.

Smart contracts assume the use of proxies, but follow insecure approaches - using constructors
and not using upgradeable versions of inherited contracts.

The code contains a sufficient number of small bugs, which could be avoided if unit tests were
written for smart contracts. We want to draw your attention to the fact that unit tests are a very
important part of development. They help to check the operation of the smart contract logic and
find minor bugs that are often difficult to notice when reviewing the code.

In addition, the code contains very few useful descriptions of functions, we recommend that you
write more detailed comments and notes in NatSpec format, as they help you understand faster
and better navigate the code.

Reaudit overview

All vulnerabilities in smart contract logic have been resolved.

Unit tests were written for the functionality of smart contracts.

https://docs.soliditylang.org/en/v0.8.17/natspec-format.html

Summary of findings

ID Description Severity Status

DFM-1 Possible loss of contract High Risk Resolved

DFM-2 Token price exploit High Risk Resolved

DFM-3 Potential different decimals Medium

Risk

Acknowledged

DFM-4 Users cannot dispose of their tokens Medium

Risk

Resolved

DFM-5 Pause logic not working Low Risk Resolved

DFM-6 Admin сant burn Low Risk Resolved

DFM-7 Arithmetic miscalculation Low Risk Resolved

DFM-8 Redundant condition Low Risk Resolved

DFM-9 Empty function Low Risk Resolved

DFM-10 Tax calculation error Low Risk Resolved

DFM-11 Reserves calculation error Low Risk Resolved

DFM-12 Pointless use of SafeMath Informationa

l

Resolved

DFM-13 Missing a multiplier Low Risk Resolved

DFM-14 Incorrect storage pointer Informationa

l

Acknowledged

DFM-15 Upgradeable versions of contracts and
initialization

High Risk Acknowledged

DFM-16 Unit tests Informationa

l

Resolved

DFM-17 Using events Informationa

l

Partially Resolved

Application security checklist

Compiler errors Passed

Possible delays in data delivery Passed

Timestamp dependence Passed

Integer Overflow and Underflow Passed

Race Conditions and Reentrancy Passed

DoS with Revert Passed

DoS with block gas limit Passed

Methods execution permissions Passed

Private user data leaks Passed

Malicious Events Log Passed

Scoping and Declarations Passed

Uninitialized storage pointers Passed

Arithmetic accuracy Passed

Design Logic Passed

Cross-function race conditions Passed

Detailed Audit Information

Contract Programming

Code Specification

Gas Optimization

Solidity version not specified Passed

Solidity version too old Passed

Integer overflow/underflow Passed

Function input parameters lack of check Passed

Function input parameters check bypass Passed

Function access control lacks management Passed

Critical operation lacks event log Passed

Human/contract checks bypass Passed

Random number generation/use vulnerability Passed

Fallback function misuse Passed

Race condition Passed

Logical vulnerability Passed

Other programming issues Passed

Visibility not explicitly declared Passed

Variable storage location not explicitly declared Passed

Use keywords/functions to be deprecated Passed

Other code specification issues Passed

Assert () misuse Passed

High consumption ‘for/while’ loop Passed

High consumption ‘storage’ storage Passed

“Out of Gas” Attack Passed

Findings /SafeToken.sol

DFM-1 «Possible loss of contract»

Severity: High Risk

Status: Resolved

Description: The administrator can be deprived of access rights.

The SafeToken::rely() and SafeToken::deny() functions allow you to remove existing administrators

or even remove your own rights. In this case, you may lose access due to the fact that another

administrator deprives you of the rights or the smart contract may be left without an administrator

at all if you yourself deprive yourself of the rights through negligence.

Recommendation: Remove the ability to remove your own rights and change the logic for adding

and removing administrators if the described finding poses a threat to you.

You can use the OpenZeppelin AccessControl contract, which includes a default owner and allows

you to add roles for other members.

Client Comment:

 
If you could have had a chance to take a look at the code in a deeper detail you'll find out the

implementation containing rely() and deny() lyes on top of the ERC-173 compliant proxy which is a

widely accepted standard of ownership management. Meaning, rely() and deny() reside on the

implementation contract level only (the same is used by Maker DAO Dai stable coin).

We enhanced with ERC-173 which is on proxy contract implementing ownership management. 

https://eips.ethereum.org/EIPS/eip-173

Defimoon’s reply:

We would like to bring to your attention a potential vulnerability in the implementation contract.
While it is true that access to the proxy contract will remain, allowing for updates to the
implementation contract in the future, we believe it is important to rectify the situation at the get-
go. Updating the implementation contract post-deployment to resolve issues that were flagged
before the deployment may cause inconveniences, delays and extra funds being spent, which we
consider to be redundant.

In reference to your comment, relying solely on someone else's code as a solution may not be
sufficient. It is important to familiarize oneself with the latest updates in the Solidity language and
it's documentation, including updates such as the obsolescence of SafeMath library two years
ago. We would have taken the same approach with the DAI developers in this situation.

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/AccessControl.sol
https://eips.ethereum.org/EIPS/eip-173

DFM-2 «Token price exploit»

Severity: High Risk

Status: Resolved

Description: Users can manipulate the price of the token in order to make a profit and dump the

price of the token.

Using SafeVault:deposit() function, a number of actions can be taken to artificially increase the

token price and profit from it. To do this, it is sufficient to: 

1) Buy tokens on the SafeToken contract. 

2) Make a deposit to the SafeVault contract oneself, which will artificially increase the token price. 

3) Sell tokens on the SafeToken contract at an inflated price. 

4) Make a withdraw on the SafeVault contract. 

 

For example: 

- User buy 1000 tokens: token price = 1.001253 

- Attacker buy 100 tokens: token price = 1.001367 

- Attacker deposit 1000 usd to SafeVault: token price = 1.912840 

- Attacker sell 100 tokens overpriced: received 190 usd 

- Attacker withdraw 1000 usd from SafeVault: token price = 0.910572

Such a situation can only occur if other users have already purchased Safe tokens, thereby
replenishing the Vault. Due to this vulnerability, other users will suffer losses.

Furthermore, thanks to this vulnerability, not only can the token price gradually dump, but it can
also be reduced to less than 1 (0.910572 in the screenshot). This contradicts what is written in your
WhitePaper about the token never dropping in price: "$SAFE is 100% collateralized by $USDC and
its unique architecture makes it mathematically impossible to drop in price.»

Recommendation: We recommend reworking the user interaction logic with the SafeVault

contract.

DFM-3 «Potential different decimals»

Severity: Medium Risk

Status: Acknowledged

Description: In contract SafeToken.sol, in addition to its own token, the usd token is also used.

When calculating the price of a token, the SafeToken::price() function uses the values of both

tokens, which can have different decimals, so it is important to take this into account when

calculating. For example, USDT and USDC stablecoins has decimals of 6, while BUSD has decimals

of 18.

Since we do not know which token you are going to use, we must warn you about this.

Recommendation: Check if your code takes into account the decimals of both tokens and make

sure that if you suddenly want to change the token, then this will not break the code.

The best practice is not to use a static variable, but to get these values of both tokens dynamically

when calculating. Like this: usd.decimals() for a third-party token and decimals for your own (or

SafeToken::decimals() if called externally).

Client Comment:

Not quite sure what this is doing here as “Medium Risk” which you define as “A vulnerability that
can cause the loss of some Tokens / Funds.”.
We are perfectly aware of the difference in decimals between stables.
“Since we do not know which token you are going to use” - we state this in the whitepaper. USDC
uses 6 decimals as well as the SAFE, which is not configurable as well.

Defimoon’s reply:

We would like to clarify our previous message regarding the risk level descriptions. The
descriptions of "High Risk" and "Medium Risk" are examples to illustrate the degree of threat and
are primarily focused on the potential impact on funds. However, it is important to acknowledge
that there may be other types of serious vulnerabilities that are not explicitly described.

In light of your comment, we understand the need for more detailed and comprehensive
descriptions. We will consider incorporating additional examples and information in our future
assessments.

Regarding the code, we would like to highlight that the specific token used is not set as a
constant and is not referenced in any way in the code itself — contracts can be deployed with any
token mimicking USDC, and therefore, it is our responsibility to bring any potential issues to your
attention. Our comment serves as a reminder for future reference, should you choose to change
the token. We trust that the WhitePaper also acknowledges the possibility of changes to the
project, as stated "This is a draft based on the overall ideas of how we plan to develop the project,
but all of them are subject to CHANGE”.

Moreover, we would like to point out that this is a security engagement and even though we do
take accompanying documentation, such as WhitePaper into the account, the final decision is
made based on what is present in the codebase. The submitted code contains no documentation,
almost no comments, no descriptions and no unit tests, which, combined with multiple issues and
inconsistencies, make it impossible to determine the true intent of the protocol.

In other words, the claims made in the WhitePaper do not correlate with the provided code. The
client claims that the provided code operates as intended. Since we are a security agency and
our goal is to protect the protocol and the community, we cannot base our decisions on claims
made in promotional materials, personal assurances in authenticity or promises — this information
is taken into consideration, but the decision is made based on what is present in the code.

DFM-4 «Users cannot dispose of their tokens»

Severity: Medium Risk

Status: Resolved

Description: Weird logic in a SafeToken::transferFrom() function:

require(src == address(0) || dst == address(0) || admin[src] == 1 || admin[dst] == 1,
"SafeToken: transfer-prohibited");

This modifier says that token transfers can only be performed either by administrators or by

address(0), which is equivalent to burning tokens.

In addition, your contracts also use the transfer() and transferFrom() functions, which means that

either the contracts themselves will need to have an administrator role, or the recipients will have

an administrator role.

Recommendation: Regardless of whether only administrators should be able to use the transfer,

transfer must be disabled on address(0). This is due to the fact that it is used to burn the token,

which means that when transferring to address(0) there should be a decrease in supply tokens, as

happens when calling burn(). You can follow the example of OZ, whose code has been repeatedly

audited and is used everywhere.

Also, please check if it was intended that only administrators can perform the transfer. After all,

users still have access to buying and selling tokens, but not their transfer.

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/1a60b061d5bb809c3d7e4ee915c77a00b1eca95d/contracts/token/ERC20/ERC20.sol#L224

DFM-5 «Pause logic not working»

Severity: Low Risk

Status: Resolved

Description: Contract SafeToken.sol can never be paused. The SafeToken::transferFrom() functions

include the pause logic:

function transferFrom(

 address src,

 address dst,

 uint256 wad

) public nonReentrant returns (bool) {

 require(!paused(), "SafeToken:paused"); 

but the contract does not contain logic that allows you to change the pause state, which means

that it will never be possible to pause the contract.

Remember that OZ Pausable contract only includes internal functions for managing pause.

Recommendation: Add administrative functions to control the pause. Do not forget to restrict

access to this functionality, for example, with the auth modifier.

Client Comment:

Yes, it’s not intended to be paused in its current implementation, which is not part of its interface
in this implementation, although can be added later. The token is completely self-contained not
possible to be listed on DEX and can’t be dropped in price. 

Overall good point, low risk accepted, and public function to be exposed requiring admin
privileges.

DFM-6 «Admin сant burn»

Severity: Low Risk

Status: Resolved

Description: The _burn() function is only available to admins or calls from inside the contract, but it

still contains allowance checks:

if (usr != _msgSender() && allowance[usr][_msgSender()] != type(uint256).max) {

 require(allowance[usr][_msgSender()] >= wad, "SafeToken:insufficient-allowance");

 allowance[usr][_msgSender()] = sub(allowance[usr][_msgSender()], wad);

}

This suggests that even administrators are not allowed to burn tokens if they have not received

permission to do so. There's nothing wrong with that, we just want to make sure it fits your intent.

Recommendation: Pay attention to this and check if it matches your idea and make changes

otherwise.

Client Comment:

 
Not clear why it’s called “admin can’t burn” though.

Defimoons’ reply:

We would like to bring to your attention the contradiction between the auth modifier in the burn()
function and the requirement for user permission — in the current implementation, the admin
cannot burn someone else's tokens without the user's permission. This is why we deemed it
necessary to mention this issue in our analysis.

For comparison, we would like to draw your attention to the DAI contract implementation, which
you have referenced in your comments, where the burn() function does not utilize any modifiers,
avoiding any potential confusion or questions about its operation principle. 

DFM-7 «Arithmetic miscalculation»

Severity: Low Risk

Status: Resolved

Description: The SafeToken::buySafeForExactAmountOfUSD() function may have errors in its

calculations. Solidity works only with integers, so the result of dividing small numbers by large

ones can be zero, and the sum of the result of dividing two numbers by another number will not

always be equal to the result of dividing the sum of two numbers by another. This must always be

taken into account. In such a case, SafeToken::buySafeForExactAmountOfUSD() can be changed

like this:

function buySafeForExactAmountOfUSD(uint256 _usdToSpend) public nonReentrant returns
(uint256) {

 uint256 usdTax = _usdToSpend * BUY_TAX_PERCENT / HUNDRED_PERCENT;

 uint256 usdToSwapForSafe = _usdToSpend - usdTax;

 uint256 safeTokensToBuy = (usdToSwapForSafe * 1e6) / price();

 _mint(_msgSender(), safeTokensToBuy);

 usd.transferFrom(_msgSender(), address(this), _usdToSpend);

 uint256 paid = _distribute(usd, usdTax, taxDistributionOnMintAndBurn);

 safeVault.deposit(_usdToSpend - paid);

 return _usdToSpend - paid;

}

Recommendation: Fix the function and always pay attention to the peculiarities of calculations in

Solidity.

 

DFM-8 «Redundant condition»

Severity: Low Risk

Status: Resolved

Description: The SafeToken::buyExactAmountOfSafe() function contains an unnecessary if

condition:

uint256 paid = _distribute(usd, usdTax, taxDistributionOnMintAndBurn);

if (usdTax - paid > 0) {

 safeVault.deposit(usdToSpend - paid);

}

Recommendation: The if condition should be removed as it is unnecessary and doesn't match the

logic in the implementation block.

DFM-9 «Empty function»

Severity: Low Risk

Status: Resolved

Description: Unused empty function SafeToken::estimateBuyExactAmountOfSafe():

function estimateBuyExactAmountOfSafe(uint256 _safeTokensToBuy) public {}

Empty functions in a contract can be bad for other contracts that might try to use them, since

calling such a function will not return an error. In the future, this may also affect your contracts if

you decide to expand the ecosystem.

Recommendation: Delete this function.

DFM-10 «Tax calculation error»

Severity: Low Risk

Status: Resolved

Description: The SafeToken::sellSafeForExactAmountOfUSD() function contains an error in the

calculation of tax. The function multiplies by SELL_TAX_PERCENT twice. The function can be

changed like this:

uint256 usdTax = _usdToGet * SELL_TAX_PERCENT / HUNDRED_PERCENT;

uint256 usdToSpend = _usdToGet + usdTax;

uint256 safeTokensToSell = (usdToSpend * 1e6) / price();

Recommendation: Correct the calculations in the function.

DFM-11 «Reserves calculation error»

Severity: Low Risk

Status: Resolved

Description: The SafeToken::getUsdReserves() function uses the value of SafeVault::totalSupply()

to calculate the price. It is assumed that the value of SafeVault::totalSupply() should correspond to

the value of the deposit, although this is not the case.

Tokens can simply be sent to the SafeVault.sol contract, resulting in a different

SafeVault::totalSupply() and deposit value. Thus, it is possible to achieve an increase in the price of

the token without changing the variable that stores the value of the deposit.

Recommendation: Best practice would be to use SafeVault::deposited() instead of

SafeVault::totalSupply().

Client’s comments:

Defimoon’s reply:

We would like to provide a demonstration to help clarify this finding in more detail. Using the

following example (please note that taxes and multipliers are not taken into account for simplicity):

Consider a scenario where User1 buys 100 SAFE tokens:

usd.balanceOf(SafeVault) = 100 

SafeVault.totalSupply() = 100 

SafeVault.deposited() = 100 

SafeVault.balances(SafeToken) = 100 

SafeToken.price() = 1

Then, another user, User2, sends additional 100 usd tokens to the SafeVault contract:

usd.balanceOf(SafeVault) = 200 

SafeVault.totalSupply() = 200 

SafeVault.deposited() = 100 

SafeVault.balances(SafeToken) = 100 

SafeToken.price() = 2

In this scenario, if User1 decides to sell their SAFE tokens, they will only be able to sell 50 tokens to

retrieve 100 usd. This means that they will have 50 tokens left that they cannot sell, and these

tokens will not be backed by anything, despite the fact that the SafeVault contract has usd tokens

(as these tokens will be impossible to obtain due to a greedy contract vulnerability).

This demonstrates that the current methodology for calculating the price of the SAFE token is

incorrect and should be revised to provide more accurate results. For example, one can use

something like this:

SafeToken.price() = SafeVault.deposited() / SafeToken.totalSupply();

DFM-12 «Redundant use of SafeMath»

Severity: Informational

Status: Resolved

Description: Since version 0.8.0, the definition of overflow and underflow of variables is built into

the Solidity compiler and the use of the SafeMath library does not make sense, but only takes up

the contract bytecode. You are using version 0.8.17.

Recommendation: You can replace using the SafeMath library with regular arithmetic operations.

https://docs.soliditylang.org/en/v0.8.0/080-breaking-changes.html#:~:text=Arithmetic%20operations%20revert%20on%20underflow%20and%20overflow.%20You%20can%20use%20unchecked%20%7B%20...%20%7D%20to%20use%20the%20previous%20wrapping%20behaviour.

Findings / Fork SafeToken.sol

DFM-13 «Missing a multiplier»

Severity: Low Risk

Status: Resolved

Description: In the token fork contract, the price calculation is missing a multiplier 1e18 that should

be multiplied with the price.

Recommendation: Add a multiplier, as implemented in the original contract. 

https://github.com/SafeYields/safe-yields-plus-contracts/blob/0517e270237cc9ce73a4383cc667c6e3ed335d70/contracts/SafeToken.sol#L196

Findings /Others

DFM-15 «Upgradeable versions of contracts and initialization»

Severity: High Risk

Status: Acknowledged

Description: Your smart contracts assume a proxy implementation, but still use constructors and

regular versions of inherited contracts, which can cause contracts to be deployed and initialized

incorrectly.

Recommendation: When using an implementation proxy, it is better to use an upgrade version of

contracts (analogues from OZ), since such contracts do not take into account the logic written in

the constructor. Upgradeable versions of contracts provide for this and use initialization functions.

Also, we highly recommend using OpenZeppelin's Initializable.sol contract (instead of "hardhat-

deploy/solc_0.8/proxy/Proxied.sol") in conjunction with the hardhat-upgrades plugin, which does

all the work with TransparentProxy and does the interactions with a smart contract simple and

convenient.

Client’s comments:

These are not regular contracts, there’s a “proxied” modifier for constructor/initializer pair making

This doesn’t cover disadvantages of ERC-1967 transparent proxy here which is currently used

and part of hardhat-deploy. It’s true that ERC-1967 doesn’t have an initialization mechanism.

This also doesn’t include advantages of OZ proxy.

Also, ERC-1967 is a widely adopted standard, and OZ Proxy.sol uses it as well.

Defimoon’s reply:

We would like to clarify that we are not mandating the use of Initializable.sol and hardhat-

upgrades.

The reason for our recommendation is that the current implementation does not use upgradeable

versions of contracts, which can potentially lead to improper initialization of inherited contracts.

For example, in the SafeNFT contract, the methods of inherited contracts are independently

called, rather than being invoked within their constructors.

By using upgradeable versions of contracts, the risk of improper initialization can be reduced and

the integration of ready-made solutions can be simplified for better compatibility.

https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable
https://github.com/OpenZeppelin/openzeppelin-upgrades/blob/master/packages/core/contracts/Initializable.sol
https://www.npmjs.com/package/@openzeppelin/hardhat-upgrades

DFM-16 «Unit tests»

Severity: Informational

Status: Resolved

Description: For contracts, there are not even minimal unit tests that could prevent the

occurrence of most logical errors, and with the proper approach, some vulnerabilities. Unit tests

are an integral part of the development of any application, so they should not be ignored.

Recommendation: We do not recommend launching into production until unit tests are written for

all smart contracts that pass without errors.

Client’s comment: Accepted.

DFM-17 «Using events»

Severity: Informational

Status: Partially Resolved

Description: Use events in all major functions.

Events help you view the event log for the necessary topics and make a convenient search for

them. In addition, events will be useful for collecting statistics and programming interactions with

the contract.

Recommendation: The best practice would be to use events in all core functions.

Client’s comment:

State changing functions are only transfers here which are being emitted already.

Defimoon’s reply:

The functions of selling and buying tokens change the state of the contract and are an important

part of the protocol.

Automated Analyses

Slither

Slither's automatic analysis not found vulnerabilities, or these false positives results .

Methodology

Manual Code Review

We prefer to work with a transparent process and make our reviews a collaborative effort. The goal
of our security audits is to improve the quality of systems we review and aim for sufficient
remediation to help protect users. The following is the methodology we use in our security audit
process.

Vulnerability Analysis

Our audit techniques include manual code analysis, user interface interaction, and whitebox
penetration testing. We look at the project's web site to get a high-level understanding of what
functionality the software under review provides. We then meet with the developers to gain an
appreciation of their vision of the software. We install and use the relevant software, exploring the
user interactions and roles. While we do this, we brainstorm threat models and attack surfaces.
We read design documentation, review other audit results, search for similar projects, examine
source code dependencies, review open issue tickets, and investigate details other than the
implementation.

Documenting Results

We follow a conservative, transparent process for analyzing potential security vulnerabilities and
seeing them through successful remediation. Whenever a potential issue is discovered, we
immediately create an Issue entry for it in this document, even though we have not yet verified the
feasibility and impact of the issue. This process is conservative because we document our
suspicions early even if they are later shown to not represent exploitable vulnerabilities. We follow
a process of first documenting the suspicion with unresolved questions, then confirming the issue
through code analysis, live experimentation, or automated tests. Code analysis is the most
tentative, and we strive to provide test code, log captures, or screenshots demonstrating our
confirmation. After this we analyze the feasibility of an attack in a live system to make a final
decision.

Suggested Solutions

We search for immediate mitigations that live deployments can take, and finally we suggest the
requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and
successful mitigation and remediation is an ongoing collaborative process after we deliver our
report, and before the details are made public.

 

 

Appendix A — Finding Statuses

Resolved Contracts were modified to permanently resolve the finding

Mitigated The finding was resolved by other methods such as revoking contract
ownership or updating the code to minimize the effect of the finding

Acknowledged Project team is made aware of the finding

Open The finding was not addressed

	Manual Code Review
	Vulnerability Analysis
	Documenting Results
	Suggested Solutions
	Appendix A — Finding Statuses

